RADIOACTIVE ISOTOPE

Background reading - Consider how scientists determine the age of things.

Many of the earth's geological processes such as the eruption of volcanoes or earthquakes, the drifting of the continents, and erosion of land, occur at irregular intervals. There can be spurts of activity and then long durations of inactivity. These processes often reveal *relative time* which, can help provide science with a timeline for the age of the earth but not *absolute time*. Geologists that study the age of the earth and its rock layers need ways to accurately or *absolutely* determine their age. Likewise, in biology, biologists need ways to actively date ancient samples of human, animal or plant remains. The answer to how science can accurately date and determine the age of things, is found within the realm of physics. Within the atom is highly dependable and very accurate clock. This clock is atomic decay or the rate of radioactive decay and it is very predictable. For the remains of plants and animals' the decay of carbon into nitrogen or *carbon dating* can be used to determine how old once living remains are. As for the age of the earth, uranium-lead dating, the radioactive decay of uranium into lead is used. Based on the very old zircon rock from Australia we know that the Earth is at least 4.374 billion years old.

Testing radioactive minerals in rocks best determines absolute time. Radioactive decay goes on like clockwork at an even and continuous pace. The nuclei of radioactive atoms break down releasing particles and radiation. Finally, the radioactive element changes into a stable new element. The radioactive element is called the parent, and the stable new element is called the daughter.

The rate of radioactive decay is measured by half-life. Half-life is the time it takes for the atoms of a parent element to change into atoms of the daughter element. Consider the element radium 226, which has a half-life of 1,622 years. What happens to 10 grams of radium after 1,622 years? Five grams of radium remain, and five grams will have changed to lead, hence the *half-life* is 1,622 years.

Vocabulary-			
Word bank:	Radioactive Decay -	Half-life -	lsotopes -

1.______ each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass, but not in chemical properties.

2.______ the amount of time taken for the radioactive decay of a specific isotope to fall to half its original value.

3.______ the emission of radiation specifically in the form of particles (protons or neutrons) from the nucleus of an atom. **This reduces the atomic mass and or atomic number** and potentially even the elements identity.

BELOW are 3 naturally occurring isotopes of Carbon.

FIGURE 2.3 These three carbon isotopes all have the same number of protons and thus the same atomic number, 6. Their atomic masses differ, however, because they have slightly different numbers of neutrons. The atomic mass of any element is the average of the weighted sum of the atomic masses of its various isotopes. One isotope of an element—for example, carbon-12—is far more abundant than the others because natural processes favor that particular isotope.

4. Base your answers (1-3) on the above diagram. Which isotope of carbon has the greatest atomic mass?

- A. Carbon 12
- B. Carbon 13
- C. Carbon 14
- D. Carbon 15

5. Which atomic particle gives carbon or any atom their identity? (What makes carbon, carbon?)

- A. protons
- B. neutron
- C. electrons
- D. quarks and leptons
- 6. Which atomic particle causes this isotope's mass or "weight" to vary from the norm?
 - A. protons
 - B. neutron
 - C. electrons
 - D. quarks and leptons

Where carbon-14 comes from:

7. Carbon is a common component of our atmosphere bound to oxygen in the form of carbon-dioxide or carbon- monoxide. Radiation from the sun interacts with these atmospheric gases and others the most of which is nitrogen. Nitrogen when bombarded by the sun's radiations can turn into carbon-14. Most of the carbon in our atmosphere is carbon-12. Carbon-14 is a small percentage of the atmosphere that has remained relatively

consistent throughout our planet's recent history. The ratio of carbon-14 is changing however, due to carbon inputs to atmosphere from the combustion of fossil fuels.

Select the best answer based on your knowledge and the above passage.

- A. Carbon-14 comes from carbon-12
- B. Carbon-14 is a product of solar radiation in our atmosphere and comes from nitrogen.
- C. Carbon-14 comes from Santa Clause
- D. Carbon-14 has 7 electrons which makes it an isotope.

Look at the graph to the right. The parent isotope represents unchanged atoms of carbon. The daughter product represents an increasing number of nitrogen atoms over time (half-lives).

8a. Did the number *daughter isotope* atoms increase or decrease over time (half-lives). → Daughter Product

Circle one \rightarrow increase or decrease

Essay - What do these two lines (from the graph) represent? How do you know this? Discuss and use at least **2** of the following vocabulary words: **radioactive**, **isotope**, **parent and daughter isotope**, **half-life**, **radioactive** – **decay** WRITE ON ANSWER KEY

3

Carbon-14 has a *half-life* of 5730 years. This means that statistically speaking if you had 100 carbon-14 atoms about ½ will have decayed into the more stable parent element nitrogen-14, what they were originally 5730yrs. Base your answers to the following, on the above diagram. Imagine these atoms are in the bones of this mastodon found at a paleontologist's dig site.

9. About half or 50% remain unchanged, indicating the sample age to be about what age?

A. 5,730 yrs.B. 11,460 yrs.C. 17,190 yrs.D. 22,920 yrs.

10. About 3/4 or 75% have changed, meaning they have radioactively decayed into the daughter element nitrogen and 25% of the C-14 remains. What is the age of the sample?

A. 5,730 yrs.
B. 11,460 yrs.
C. 17,190 yrs.
D. 22,920 yrs.

11. The paleontologist estimates based on ratio samples of carbon-14 to nitrogen-14 from the animal's bones that about 5 half-lives have elapsed since this animal died. What is the approximate age of the remains?

A. 11,460 yrs.
B. 17,190 yrs.
C. 22,920 yrs.
D. 28,650 yrs.

Name	
------	--

Multiple Choice – ANSWER SHEET fill it along with a short written response to question essay TEAR OFF THIS PAGE – RECORD YOUR OWN ANSWERS AND PUT INTO IN BOX

Essay - What do these two lines (from the graph) represent? How do you know this? Discuss and use at least **2** of the following vocabulary words: **radioactive**, **isotope**, **parent and daughter isotope**, **half-life**, **radioactive** – **decay** WRITE ON ANSWER KEY

RADIOACTIVE ISOTOPE

Background reading - Consider how scientists determine the age of things.

Many of the earth's geological processes such as the eruption of volcanoes or earthquakes, the drifting of the continents, and erosion of land, occur at irregular intervals. There can be spurts of activity and then long durations of inactivity. These processes often reveal *relative time* which, can help provide science with a timeline for the age of the earth but not *absolute time*. Geologists that study the age of the earth and its rock layers need ways to accurately or *absolutely* determine their age. Likewise, in biology, biologists need ways to actively date ancient samples of human, animal or plant remains. The answer to how science can accurately date and determine the age of things, is found within the realm of physics. Within the atom is highly dependable and very accurate clock. This clock is atomic decay or the rate of radioactive decay and it is very predictable. For the remains of plants and animals' the decay of carbon into nitrogen or *carbon dating* can be used to determine how old once living remains are. As for the age of the earth, uranium-lead dating, the radioactive decay of uranium into lead is used. Based on the very old zircon rock from Australia we know that the Earth is at least 4.374 billion years old.

Testing radioactive minerals in rocks best determines absolute time. Radioactive decay goes on like clockwork at an even and continuous pace. The nuclei of radioactive atoms break down releasing particles and radiation. Finally, the radioactive element changes into a stable new element. The radioactive element is called the parent, and the stable new element is called the daughter.

The rate of radioactive decay is measured by half-life. Half-life is the time it takes for the atoms of a parent element to change into atoms of the daughter element. Consider the element radium 226, which has a half-life of 1,622 years. What happens to 10 grams of radium after 1,622 years? Five grams of radium remain, and five grams will have changed to lead, hence the *half-life* is 1,622 years.

Vocabulary-			
Word bank:	Radioactive Decay -	Half-life -	lsotopes -

1.______ each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass, but not in chemical properties.

2.______ the amount of time taken for the radioactive decay of a specific isotope to fall to half its original value.

3.______ the emission of radiation specifically in the form of particles (protons or neutrons) from the nucleus of an atom. **This reduces the atomic mass and or atomic number** and potentially even the elements identity.

BELOW are 3 naturally occurring isotopes of Carbon.

FIGURE 2.3 These three carbon isotopes all have the same number of protons and thus the same atomic number, 6. Their atomic masses differ, however, because they have slightly different numbers of neutrons. The atomic mass of any element is the average of the weighted sum of the atomic masses of its various isotopes. One isotope of an element—for example, carbon-12—is far more abundant than the others because natural processes favor that particular isotope.

4. Base your answers (1-3) on the above diagram. Which isotope of carbon has the greatest atomic mass?

- A. Carbon 15
- B. Carbon 14
- C. Carbon 13
- D. Carbon 12

5. Which atomic particle gives carbon or any atom their identity? (What makes carbon, carbon?)

- A. electrons
- B. neutron
- C. protons
- D. quarks and leptons

6. Which atomic particle causes this isotope's mass or "weight" to vary from the norm?

- A. neutron
- B. protons
- C. electrons
- D. quarks and leptons

Where carbon-14 comes from:

7. Carbon is a common component of our atmosphere bound to oxygen in the form of carbon-dioxide or carbon- monoxide. Radiation from the sun interacts with these atmospheric gases and others the most of which is nitrogen. Nitrogen when bombarded by the sun's radiations can turn into carbon-14. Most of the carbon in our atmosphere is carbon-12. Carbon-14 is a small percentage of the atmosphere that has

remained relatively consistent throughout our planet's recent history. The ratio of carbon-14 is changing however, due to carbon inputs to atmosphere from the combustion of fossil fuels.

Select the best answer based on your knowledge and the above passage.

- A. Carbon-14 comes from carbon-12
- B. Carbon-14 has 7 electrons which makes it an isotope.
- C. Carbon-14 comes from Santa Clause
- D. Carbon-14 is a product of solar radiation in our atmosphere and comes fromnitrogen.

Look at the graph to the right. The parent isotope represents unchanged atoms of carbon. The daughter product represents an increasing number of nitrogen atoms over time (half-lives).

8a. Did the number *daughter isotope* atoms increase or decrease over time (half-lives). **Output**

Circle one \rightarrow increase or decrease

8b. Did the number *parent isotope* atoms increase or decrease over time (half-lives). → Parent Isotope

Circle one \rightarrow increase or decrease

Essay - What do these two lines (from the graph) represent? How do you know this? Discuss and use at least **2** of the following vocabulary words: **radioactive**, **isotope**, **parent and daughter isotope**, **half-life**, **radioactive** – **decay** WRITE ON ANSWER KEY

8

Carbon-14 has a *half-life* of 5730 years. This means that statistically speaking if you had 100 carbon-14 atoms about ½ will have decayed into the more stable parent element nitrogen-14, what they were originally 5730yrs. Base your answers to the following, on the above diagram. Imagine these atoms are in the bones of this mastodon found at a paleontologist's dig site.

9. About half or 50% remain unchanged, indicating the sample age to be about what age?

A. 22,920 yrs.
B. 17,190 yrs.
C. 11,460 yrs.
D. 5,730 yrs.

10. About 3/4 or 75% have changed, meaning they have radioactively decayed into the daughter element nitrogen and 25% of the C-14 remains. What is the age of the sample?

A. 22,920 yrs.B. 17,190 yrs.C. 11,460 yrs.D. 5,730 yrs.

11. The paleontologist estimates based on ratio samples of carbon-14 to nitrogen-14 from the animal's bones that about 5 half-lives have elapsed since this animal died. What is the approximate age of the remains?

A. 28,650 yrs.B. 22,920 yrs.C. 17,190 yrs.D. 11,460 yrs.

Trame	N	ame
-------	---	-----

Multiple Choice – ANSWER SHEET fill it along with a short written response to question essay TEAR OFF THIS PAGE – RECORD YOUR OWN ANSWERS AND PUT INTO IN BOX

Essay - What do these two lines (from the graph) represent? How do you know this? Discuss and use at least 2 of the following vocabulary words: radioactive, isotope, parent and daughter isotope, half-life, radioactive – decay WRITE ON ANSWER KEY

Matching

Write the letter on the line that below that best describes the terms.

<u>Vocabulary</u>	Definition
	A. the number of
24. Atomic	protons in an atom
Mass	
	B. Subatomic particle
25. Nucleus	with a negative
	charge
E DE DE	C. Center of an atom
26. Atomic	
Number	
5	D. Subatomic particle
27.	with a positive
Electrons	charge
	E. The number of
28.	neutrons plus the
Neutrons	number of neutron
	in an atom
	F. Subatomic particle
29. Protons	with a neutral charge

<u>**30-33.Directions:**</u> The chemical symbol of four different elements are listed below.

Cd Cu Br P

Write the symbol of these four elements in the appropriate box in the chart below to indicate whether the element is a metal on a nonmetal.

Element Classification	Element Symbol
Metals	
Nonmetals	

34. Which group in the Periodic Table is the Noble Gases located?

Directions: Draw a Bohr Model of the elements below. Show all your work

Element:	Bohr Model
25 Ma	
54.9380	
1	
Protons:	
Neutrons:	
	4
Electrons:	
Atomic #:	· · · · · · ·
Atomic Mass:	

Element:	Bohr Model
16 S 32.059	
Protons:	
Neutrons:	
Electrons:	
Atomic #:	
Atomic Mass:	

Directions: Draw the Lewis Structures

Ne	Be

Pr			 				.	н 5. 21	•	_
operti		ξ.	(223) (223)	55 Cs 132.90545	37 Rb 85,4678	19 X 80.0983	11 Na 22.989770	6.94] 	1 Н 1.00794	-
ies of j			(226) 88	56 Ba 137.327	38 Sr 87.62	40.078	12 Mg 24,3050	4 Be 9.012182	N	
Metals			103 L.r (262)	71 Lu 174.967	39 X 88.90585	21 Sc 44.955910	ω		5 5	
	89 Ac 232.0381	57 La 138.9055	104 Rf (261)	72 Hf 178.49	91.224 91.224	47.867	4			0-0
	90 Th 232.0381	58 Ce 140.116	105 Db	73 Ta 180.94.79	41 Nb 92.90638	23 V 50.9415	UN.			Chine
 	91 Pa	59 Pr 140.50765	106 201 106	74 183.84	95.94 95.94	51.9961	6			Line Sector
Prope	92 U 238.0289	14424	107 Bh (262)	75 Re 186.207	영 전 88	25 Mn 54.938049	7			- Lidui
rties o	93 ND (237)	61 Pm (145)	108 日S (265)	76 Os 190.23	101.07 Ru	26 Fe	8			10
of Non	94 (244)	62 Sm 150.36	109 Mt (266)	77 Ir 192.217	45 Rh 102.90550	27 Co 58.933200	ø			2 - 0
metals	95 Am (243)	63 Eu	110 Ds (269)	78 Pt 195.078	46 Pd	28 Ni 58.6534	10			a se s
	247) (247)	64 Gd	111 Rg (272)	79 Au 196,56655	47 Ag 196.56655	29 Cu 63.545	ņ			1.8.8
	97 197 (247)	65 Tb 158.92534	112 Cn (277)	80 Hg 200.59	1124 1241 1241	30 Zn 65.39	12			- NOCI
 Pro	(251) (251)	162.50	113 UU1 (277)	81 T 204.3833	49 In 114.818	31 Ga 69.723	13 Al 26.581536	10.811 B	1 3	
pertie	(252) (252)	67 Ho 164.93032	114 Uuq (277)	82 Pb 207.2	50 Sn 118.710	32 Ge	14 Si 28.0855	120107	14	Indruie
s of Mu	100 [-[1]] (257)	68 Er 167.26	UUD (277)	83 Bi 208.58038	51 Sb 121.760	33 As 74,92160	15 P 30.973761	7 N 14.00674	IJ	
etalloi	101 Md (258)	69 Tm 168.93421	116 Uuh (277)	(209) (209)	52 Te	34 Se 78.96	32.066	15.9994	16	
ds a	102 NO (259)	70 173.04		(210) (210)	53 126.90447	35 Br 79.504	17 35 4527	9 F	17	
			118 UUC (277)	86 (222)	54 Xe 131.29	36 Kr 83.80	18 Ar 39.948	20.179	4.00260	18